
Hardware logical equivalence checking with CIRCT
Dragoș Cristian Lizan 1 Fabian Schuiki 2 Martin Erhart 2, 3 Jonathan Balkind 4, 5

1University of Padua 2SiFive 3ETH Zürich 4Free and Open Source Silicon Foundation 5UC Santa Barbara

The proposal

LLHD[6] is a novel multi-level Intermediate Representation for Hardware Description

Languages which can be employed for all aspects of modern circuit design flows by

covering both higher-level, behavioral modeling and lower-level, structural modeling

and also netlist synthesis.

In particular, it could sustain a habitat of open-source design automation and veri-

fication tools by simplifying their development, as opposed to today’s landscape of

proprietary tools implementing their own disjoint and incompatible IRs.

Originally, this project aimed at demonstrating said verification prowess by imple-

menting a basic LEC (Logical Equivalence Checker) for combinatorial LLHD designs.

Specifically, by translating two circuits into their fundamental boolean equations and

formally proving or disproving their equivalence through the aid of an existing SMT

solver.

Since LLHD has been merged into the CIRCT project, a larger joint effort to develop

Circuit IR Compilers and Tools by applying the MLIR[4] and LLVM[3] development

methodology and best practices to the domain of hardware design tools, the project’s

scope changed to developing a LEC tool for the standard CIRCT dialects.

Use cases

This tool can prove to be immensely useful, potentially saving both time and money,

or at least giving peace of mind by providing formal proofs to the categories of users

who might employ it:

Designers could perform a manual tweak over a circuit then compare it with the

previous version to discover newly introduced bugs, or lack thereof.

CIRCT developers could rapidly test a new transformation pass over an

extensive design covering many of the possible corner cases.

Architecture

The tool accepts up to two input circuit descriptions; the parsed intermediate represen-

tation then gets visited by a pass which will export the relevant logical constraints to a

circuit representation. These representations act as an abstraction over the instanced

context of a SMT solver backend, in our case Z3[2], which at end gets tasked with the

equivalence problem.

Figure 1. Architectural overview of circt-lec

Logical equivalence checking in action

Checking for the equivalence of two modules is performed by constraining the arbitrary

inputs to be the same and attesting it is unsatisfiable for their outputs to differ.

The figure below highlights the constraints which are placed during value assignment

and module instancing.

In particular, LLVM’s employment of SSA[5] (Single Static Assignment) vastly simplifies

this operation.

Figure 2. @adder and @completeAdder are provably equivalent in circt-lec

Other higher-level combinational operations are similarly tested for semantic correct-

ness and regression by performing the logical equivalence check with their correspond-

ing decomposition over basic logic gates.

Present work

Considering the time constraints, we convened to focus on reaching a solid and perfor-

mant foundation for further development, ignoring busywork in favor of advancing in

implementing exciting ideas.

Coverage of the HW dialect

All the basic operations, like module, constant and output have been swiftly imple-

mented; instanceswere tricky but important to get right, as they enable checking com-

plex designs.

Integer values, aptly stored internally as bitvectors, have been implemented along with

the related extract and concat operations.

Other data structures (e.g. arrays) instead were deemed uninteresting as they are ab-

stractions that can be lowered to an integer-only representation if one were to write an

appropriate transforming pass.

Coverage of the Comb dialect

Combinational operations are being implemented at a steady pace (e.g. add, xor, and,

mux and mul are already functional), leaving time for further general efforts on devel-

oping the tool.

Nonetheless, the project is on track to cover the whole set of operations, consonant

with the originally established goal.

Future challenges

Equivalence of sequential circuits

Introducing registers vastly increases the difficulty of the problem and merits partic-

ular attention; the two considered approaches are:

Finite State Machine equivalence easily leads to memory problems as the state

space explodes (e.g. a simple i64 counter); it could become tractable by

constructing the FSM on the fly and performing bounded model checking but it

would have to be opt-in as it is an incomplete solution; on the other hand it

would ideally also consent checking arbitrary properties expressed in temporal

logic.

Register correspondence, that is discovering the register pairs which are

equivalent either through heuristics or simulation, thus reducing the problem to

equivalence of combinational circuits which the tool can already solve.

Additional ideas

In case of multiple outputs of which only a portion is wrong, show info on just

those values which are affecting the relevant outputs rather than the whole

model.

Similarly, it might be interesting to only show interpretation of values at module

boundaries rather than the whole state.

It might be possible to localize the introduced bugs by computing the Craig

interpolant between the circuits.

Users could submit a list of instances identifiers to be considered equivalent

(e.g. in case of big designs with localized changes), vastly reducing the time to

solve the equivalence check.

Extend the tool to support different logical engine backends, either by

integrating an abstract SMT api like Smt-Switch[1] or by employing the SMT-LIB

format internally.

Add support for multiple-value logic as used in SV and VHDL.

References

[1] Stanford Centaur. Smt-switch. https://github.com/stanford-centaur/smt-switch, 2019.

[2] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and Jakob Rehof, editors,

Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer

Berlin Heidelberg.

[3] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In

Proceedings of the 2004 International Symposium on Code Generation and Optimization (CGO’04), Palo Alto, California,

Mar 2004.

[4] Chris Lattner, Jacques A. Pienaar, Mehdi Amini, Uday Bondhugula, River Riddle, Albert Cohen, Tatiana Shpeisman, Andy

Davis, Nicolas Vasilache, and Oleksandr Zinenko. MLIR: A compiler infrastructure for the end of moore’s law. CoRR,

abs/2002.11054, 2020.

[5] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations. In Proceedings of the

15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’88, page 12–27, New York, NY,

USA, 1988. Association for Computing Machinery.

[6] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. Llhd: A multi-level intermediate representation for

hardware description languages, 2020.

https://github.com/frog-in-the-well/circt/ EuroProofNet Summer School on Verification Technology, Systems & Applications 2022, Saarbrücken dragos@lizan.ro

https://github.com/stanford-centaur/smt-switch
https://github.com/frog-in-the-well/circt/
mailto:dragos@lizan.ro

